

Find the first term and the common difference of each arithmetic sequence.

1.) $4,9,14,19,24$

First term (a): 4
Common difference (d): $a_{2}-a_{1}=9-4=5$
2.) $34,27,20,13,6,-1,-8, \ldots$.

First term (a): 34
Common difference (d): -7

BE CAREFUL: $\boldsymbol{A L W A Y S}$ CHECK TO MAKE SURE THE DIFFERENCE IS THE SAME BETWEEN EACH TERM!

Now you try!

Find the first term and the common difference of each of these arithmetic sequences.
a) $1,-4,-9,-14, \ldots$
b) $11,23,35,47, \ldots$

Answers with solutions

a) $1,-4,-9,-14, \ldots \quad$ a = 1 and

$$
d=a_{2}-a_{1 _}=-4-1=-5
$$

b) $11,23,35,47, \ldots \quad \mathrm{a}=11$ and

$$
d=a_{2}-a_{1}=23-11=12
$$

The first term of an arithmetic sequence is (a). We add (d) to get the next term. There is a pattern, therefore there is a formula we can use to give use any term that we need without listing the whole sequence ${ }^{-(\text {. }}$

$$
\begin{aligned}
& 3,7,11,15, \ldots \quad \text { We know } a=3 \text { and } d=4 \\
& t_{1}=a=3 \\
& t_{2}=a+d=3+4=7 \\
& t_{3}=a+d+d=a+2 d=3+2(4)=11 \\
& t_{4}=a+d+d+d=a+3 d=3+3(4)=15
\end{aligned}
$$

The first term of an arithmetic sequence is (a). We add (d) to get the next term. There is a pattern, therefore there is a formula (explicit formula) we can use to give use any term that we need without listing the whole sequence ©

The nth term of an arithmetic sequence is given by:

$$
t_{n}=a+(n-1) d
$$

The last \# in the sequence/or the \# you are looking for

First term

The position the term is in The common difference
P)\& arithmetic sequence $4,7,10,13$,

$$
t_{n}=a+(n-1) d
$$

$$
t_{14}=4+(14-1) 3
$$

$$
=4+(13) 3
$$

$$
=4+39
$$

$=43$ The $14^{\text {th }}$ term in this sequence is the number 43!

Now you try!

Find the 10th and $25^{\text {th }}$ term given the following information. Make sure to derive the general formula first and then list ehat you have been provided.
a) $1,7,13,19 \ldots$
b) The first term is 3 and the common difference is -21
c) The second term is 8 and the common difference is 3

Answers with solutions

a) $1,7,13,19$

$$
\begin{aligned}
& \mathrm{a}=1 \text { and } d=a_{2}-a_{1}=7-1=6 \\
& t_{n}=a+(n-1) d=1+(n-1) 6=1+6 n-6 \quad \text { So } t_{n}=6 \boldsymbol{n}-\mathbf{5} \\
& t_{10}=6(10)-5=55 \\
& t_{25}=6(25)-5=145
\end{aligned}
$$

b) The first term is 3 and the common difference is -21 $\quad \mathrm{a}=\mathbf{3}$ and $d=\mathbf{- 2 1}$

$$
\begin{aligned}
& t_{n}=a+(n-1) d=3+(n-1)-21=3-21 \mathrm{n}+21 \text { So } t_{n}=\mathbf{2 4}-\mathbf{2 1} \mathbf{n} \\
& t_{10}=24-21(10)=-186 \quad t_{25}=24-21(25)=-501
\end{aligned}
$$

c) The second term is 8

$$
\begin{aligned}
& \mathrm{a}=8-3=\mathbf{5} \quad \text { and } \quad d=\mathbf{3} \\
& t_{n}=a+(n-1) d=5+(\mathrm{n}-1) 3=5+3 \mathrm{n}-3 \quad \text { So t } \\
& \mathrm{n} \\
& t_{10}=3(10)+2=32 \quad t_{25}=3(25)+2=77
\end{aligned}
$$

Examples:
Find the $14^{\text {th }}$ term of the arithmetic sequence with first term of 5 and the common difference is -6 .

$$
\begin{aligned}
& a=5 \text { and } d=-6 \\
& \begin{aligned}
t_{n} & =a+(n-1) d \\
t_{l 4} & =5+(14-1)-6 \\
& =5+(13) *-6 \\
& =5+-78 \\
& =-73
\end{aligned}
\end{aligned}
$$

You are looking for the term! List which variables from the general term are provided!

The $14^{\text {th }}$ term in this sequence is the number -73!
 $4,7,10,13, \ldots$. , which term has a value of 301?

$$
\begin{aligned}
& t_{n}=a+(n-1) d \\
& 301=4+(n-1) 3 \quad \text { You are } \\
& 301=4+3 n-3 \quad \text { looking } \\
& 301=1+3 n \\
& \text { for } n \text { ! } \\
& 300=3 n \\
& 100=n \quad \text { The } 100^{\text {th }} \text { term in this } \\
& \text { sequence is } 301 \text { ! }
\end{aligned}
$$

Examples:

In an arithmetic sequence, term 10 is 33 and term 22 is -3. What are the first four terms of the sequence?
$\mathrm{t}_{10}=33$
$t_{22}=-3$
$t_{n}=a+(n-1) d$
For term 10: $33=\mathrm{a}+9 \mathrm{~d}$

Use what you know!

$$
\begin{array}{ll}
& t_{n}=a+(n-1) d \\
\text { For term 22: } & -3=\mathrm{a}+21 \mathrm{~d}
\end{array}
$$

HMMM! Two equations you can solve!

SOLVE:	$33=\mathrm{a}+9 \mathrm{~d}$	SOLVE:	$33=\mathrm{a}+9 \mathrm{~d}$
-3	$=\mathrm{a}+21 \mathrm{~d}$		$33=\mathrm{a}+9(-3)$
By elimination	-36	$=12 \mathrm{~d}$	
	-3	$=\mathrm{d}$	$33=\mathrm{a}-27$
	$60=\mathrm{a}$		

Arithmetic Sequences

Every day a radio station asks a question for a prize of $\$ 150$. If the 5th caller does not answer correctly, the prize money increased by $\$ 150$ each day until someone correctly answers their question.

Arithmetic Sequences

Make a list of the prize amounts for a week (Mon-Fri) if the contest starts on Monday and no one answers correctly all week.

Arithmetic Sequences

- Monday :
- Tuesday:
- Wednesday:
- Thursday:
- Friday:
\$150
\$300
\$450
$\$ 600$
\$750

Arithmetic Sequences

- These prize amounts form a sequence, more specifically each amount is a term in an arithmetic sequence. To find the next term we just add $\$ 150$.

