Warm-Up 1/11/18

1. What is the x-intercept and y intercept?
y-intercept
y when $x=0$

$$
\begin{aligned}
& x \text { when } y=0 \\
& (-2,0)
\end{aligned}
$$

2. Water is draining from a hot water heater:
a. What is the domain? $[0,15]$
b. What is the range?

$m=4$

c. What is the slope (simplified and labeled)?
$(15,0)$
$(0,60)$
d. What are the x and y intercepts?

Interpret this in terms of the problem scenario.

The slope is $\frac{4}{1}$.
4 gallons of water is lost every minute.
The x-intercept: $(15,0)$
means that it takes 15 minutes for the Water heater to get empty.
The y-intercept: $(0,60)$ means, the initial amount of water in the water heater is 60 gallons.

x	y	$f(x)=x+3$
-1	2	x^{0}
0	3	
1	4	Degree
2	5	is 1
3	6	

$$
f(x)=x^{2}+3
$$

Comparing Linear Models 1/11/18

1. How do you know the equation is a linear function? When the degree is 1 .
2. How do you know a table of values is a linear function? When the rate of change is constant.
3. How do you know a graph is a linear function? When the graph is a straight line.

Agenda for Today 1/11/18

1. Warm-Up
2. HW Review: Odd \& Even Functions 3. Characteristics of Linear Functions PPT
3. Class Work - Characteristics of Functions \# 1-4
4. HW \#1-5
5. Closing

HW Review: Odd \& Even Functions

Even and Odd Functions

ell whether the function is even, odd, or neither.
1.

2.

5.

8. $f(x)=-x^{3}+2 x$
7. $f(x)=x^{3}-x^{2}$
9. $f(x)=x^{3}+4 x+1$
10. $f(x)=\frac{1}{2} x^{4}+9$
11. $f(x)=5 x+1$
12. $f(x)=5$
13. Can a linear function ever be even or odd? If so, sketch an example.

14. Can an exponential function ever be even or odd? If so, sketch an example.

15. If the following points are on an odd function, what other points are on the function? Give the coordinates.

Essential Question:1/11/18

How do I interpret key features of graphs in context?

Standard: MGSE9-12.F.IF.7a

Graph linear and show intercepts, maxima, and minima (as determined by the function or by context).

Characteristics of Linear

Functions

Day 4 - Characteristics of Linear Functions.pptx
Domain, Range, x-intercept, y intercept, intervals of increase and decrease, maxima, minima, positive and negative parts of the graph, end behavior.

Functions End Behavior PPT

Functions - End Behavior.ppt

Class Work Practice

Work with your table partner to complete \# 1-4

Determine the equation for each graph. Then identify all of the characteristics listed for the following graphs.

1. Equation: $y=3 x-3$

2. Equation: $y=-\frac{5}{9}+5$

Domain:

X-Intercept:

Int. of Increase:
$-00<x<00$
Maximum:
None
End Behavior: As $x \rightarrow-\infty, f(x) \rightarrow+0$

$$
\text { As } x \rightarrow \infty, f(x) \rightarrow \infty
$$

Domain:

$$
(-\infty, \infty)
$$

X-Intercept: $(2,0)$
Int. of Increase:

Maximbie - NoNe

End Behavior: As $x \rightarrow-\infty, f(x) \rightarrow$ ∞

As $\mathrm{x} \rightarrow \infty, \mathrm{f}(\mathrm{x}) \rightarrow$ \qquad

Range:

$$
x=1
$$

none
3. Equation: $y=-2 x-7$

$y=\frac{4}{3} x$
4. Equation:

Domain: $(-\infty, \infty)$ or rall Real ${ }_{\text {Range: }}(-\infty, \infty)$ or all real X-ntiercept: $(-3.5,0)$ Y -Intercept: $(0,-7)$

$$
x=-3.5
$$

Int. of Increase:
Int. of Decrease: none

Maximum: none
Minimum:

End Behavior: As $x \rightarrow-\infty, f(x) \rightarrow \infty$

$$
\text { As } x \rightarrow \infty, f(x) \rightarrow-\infty
$$

Domain: $(-1, \infty)$

x mneme $(0,0)$
vimeat $(0,0)$
Zeros:

Int. of Increase: $-\infty<x<\infty$
Int. of Decrease: None
Constant: none

Maximum: none
Minimum: none

End Behavior: As $x \rightarrow-\infty, f(x) \rightarrow \infty$
As $x \rightarrow \infty, f(x) \rightarrow$ \qquad 0

Student Led Closing 1/11/18 - Review \# 4

Functions notation.ppt
Functions Practice HW.docx
Functions notation notes.ppt
Even Odd Functions Notes.pptx
Day 3 - Even and Odd - Homework.doc
Day 4 - Characteristics of Linear Functions.pptx

