Warm-Up 3/12/18

Name the form and characteristics you see just from looking at the equation:

1.
$$y = (x - 5)(x + 2)$$

2.
$$y = x^2 + 5x - 10$$

3.
$$y = -(x + 4)^2 + 6$$

4.
$$y = x^2 - 7$$

Agenda for Today 3/12/18

- 1. Warm-Up
- 2. I-respond drills
- 3. Day 11: Comparing
 Quadratic Functions
 (pages 46-48)
- 4. Class Work Day 11
- 5. HW Review

I-Respond Drill

3/12/18

1. Does the function $f(x) = x^2 - 10x + 18$ have a maximum or a minimum? What are its coordinates?

A. Maximum; (5, -7)

- B Minimum; (5, -7) C. Maximum; (-5, -7)
 - D. Minimum; (-5, -7)

$$X = \frac{3}{2} = \frac{3(1)}{-(-19)} = \frac{3}{10}$$

2.
$$y = -x^2 - 4x - 8$$

What is the vertex of the function?

- A. A minimum point, (-2, -12).
- B. A maximum point, (-2, -12).
- C. A minimum point, (-2, 4).
- DA maximum point, (-2, -4).

$$X = \frac{b}{2a} = \frac{-(-4)}{2(-1)} = \frac{4}{-2}$$

Calculate the average rate of change of $f(x) = 4x^2 + 3x + 5$ between the input values of 2 and 5.

- A. 93
- B. 31
 - C. 7
 - D. 10

4

How would you shift the parent function $y = x^2$ to graph the function $y = (x - 4)^2 + 5$?

- The parent function would be shifted 4 units to the right and 5 units down.
- B. The parent function would be shifted 4 units to the right and 5 units up.
- The parent function would be shifted 5 units to the right and 4 units down.
- The parent function would be shifted 5 units to the left and 4 units up.

A manufacturer of jet engine harnesses has weekly production costs of $C = 0.25x^2 - 10x + 800$ where C is the total cost (in dollars) and x is the number of units produced. What is the average rate of change in the cost per unit as the manufacturer increases the weekly production from 500 to 600 units? f(500) = 5%,300

f(600) = 84,800

- A. \$583 per unit
- B. \$265 per unit
 - C. \$848 per unit
 - D. \$274 per unit

What is the value of the function $f(x) = x^2 - 5x + 2$ evaluated at x = 2?

- A. 16
- B. 6
- C. 2
- (D.) -4

Write the following function in vertex form: $f(x) = x^2 + 6x + 11$

7. Write the following function in vertex form:
$$f(x) = x^2 + 6x + 1$$

(A.) $f(x) = (x+3)^2 + 2$

(B. $f(x) = (x-3)^2 + 2$

(C. $f(x) = (x+2)^2 + 3$

(D. $f(x) = (x-3)^2 + 3$

(1-3) = (-3)^2 + 6(-3) + 11 = 2

DAY 11: COMPARING QUADRATIC FUNCTIONS

Unit 3B: Quadratic Functions

- When comparing quadratic functions, you will want to look at their different characteristics (such as the vertices, yintercepts, zeros, etc).
- Most of the time, when you are asked to compare different quadratic functions, they will be in different representations (table, graphs, equations, or word problems).

Example 1: Which quadratic function has the bigger y-intercept?

 $y=x^2+4x+7$

X -4 -3 -2 -1 0 1 y 0 -1 0 3 5 15

Function Chasthe bigger y-intercept

Example 2: Which quadratic functions have an x-intercept at (3, 0)? a. y = (x + 3)(x + 1)

X-11:-3, -1

Example 2

Functions Dand @ have x-infercepts at (3.0).

b.			/_			
Х	-1	0	1	2	3	4
У	8	3	0	-1	0	3

Example 3: This graph shows a function f(x). Compare the graph of f(x) to the graph of the function given by the equation $g(x) = 4x^2 + 6x - 18$. Which function has the lesser minimum value? How do you know?

Example 4: Three students are shooting wads of paper with a rubber band, aiming for a trash can in the front of the room. The height of each student's paper wad, in feet, is given as a function of the time in seconds. Which student's paper wad flies the highest? (Adopted from Walch Analytic Geometry)

- The path of Alejandro's paper was is modeled by the equation f(x) = -x² + 2x + 7

 After 3 seconds, Connor's paper wad achieves a maximum height of 6.5 feet above the floor.
 - Melissa's paper wad is estimated to reach the heights shown in the table below.

x	0	2	3	4		
у	3	6	7	6		
Jerkx J=7						

$$X = \frac{-2}{2(-1)} = \frac{-2}{-2} = 1$$

$$f(1) = -(1)^{2} + 2(1) + 1$$

$$-1 + 2 + 1$$

$$y = 8$$

ARoc = -5

Example 5: For the function $g(x) = (x-3)^2 - 2$, is the average rate of change greater between x = 0 and x = 1 OR between x = 1 and x = 2?

The AROC of g(x) is greater between X=1 and x=2

Class Work Practice 3/12/18

Directions: Answer the following questions to comparing quadratic functions.

b.

1. Which quadratic function has the bigger y-intercept? Explain why.

a. $y = -x^2 + 3x + 8$

X	-4	-3	-2	-1	0	1
У	9	13	19	13	9	7

2. Which quadratic function has the smallest y-intercept? Explain why.

a.
$$y = x^2 + 4x - 12$$

b.
$$y = (x + 3)(x - 3)$$

c.
$$y = (x + 2)^2 - 13$$

3. Which quadratic function has the lower minimum value? Explain why.

a.

Х	-4	-3	-2	-1	0	1
у	0	-5	-8	-9	-8	-5

4. Which quadratic function has the bigger minimum value? Explain why.

a.
$$y = (x + 4)^2 + 2$$

b.
$$y = -(x + 3)(x + 1)$$

c.

х	2	3	4	5	6
У	0	-1	0	3	8

5. Two seagulls dive into the ocean. The given functions represent the height of each seagull above the surface of the ocean as a function of the seagull's horizontal distance from a center buoy. For each set of functions, **determine which bird descends deeper into the ocean**. Support your answer with facts (work).

First Seagull:
$$f(x) = 3(x-2)^2 - 5$$
 $= (2,-5)$
Second Seagull: $g(x) = \{(-8,0), (-6,-4), (-4,0)\}$ $= (-6,-4)$

b.
First Seagull:
$$f(x) = 3x^2 - 12x + 7$$

Second Seagull: $g(x) = \frac{1}{2}(x+2)^2 - 6$

First Seagull:
$$f(x) = 2x^2 - 8x + 11$$

Second Seagull: $x \begin{vmatrix} -3 & -1 & 1 & 3 & 5 \\ g(x) & 11 & 6 & 3 & 2 & 3 \end{vmatrix}$

- 6. Which function has the lesser maximum value? Why?
- A. Parabola with no x-intercepts and a < 0?

Use the graphs to help explain your answer.

HW Reviews

3/12/18

Day 10

2. A model rocket is launched straight upward. The path of the rocket is modeled by h = -16t2 + 200t, where h represents the height of the rocket and t represents the time in seconds.

$$h(6.25) = -16(6.25)^2 + 200(625)$$

b. Is it still in the air after 8 seconds? Explain why or why not.

c. Is it still in the air after 14 seconds? Explain why or why not.

$$h(14) = -16(14)^2 + 200(14) =$$

Work on all other HW assignments not yet turned in.