${ }^{\text {ST }} 10$

- Grab a graphing calculator
- Grab a new note packet
- Find all your homework for Unit 9 and put it in order of Days (Days 1-9)
- Find your grade sheet on the side table and highlight every grade you are not happy with.
- What can you start doing in this unit that will make you proud of yourself?

DAY 1: GRAPHING EXPONENTIAL FUNCTIONS

Unit 10: Exponential Functions

EXPLORING

Exploring with Graphs: Graph the following equations:
A. $\mathrm{y}=\mathrm{x}$

\mathbf{x}	-3	-2	-1	0	1	2	3
\mathbf{y}							

b. $y=x^{2}$

\mathbf{x}	-3	-2	-1	0	1	2	3
\mathbf{y}							

C. $y=2 x$

\mathbf{x}	-3	-2	-1	0	1	2	3
\mathbf{y}							

Type: \qquad

Type:

Type: \qquad

How is Equation C different from Equations A and B (you have already learned about equations A \& B).

EXPLORING

Exploring with a Scenario:

Which of the options below will make you the most money after 15 days?
a. Earning $\$ 100$ a day?

\mathbf{x}	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
\mathbf{y}															

b. Earning a penny at the end of the first day, earning two pennies at the end of the second day, earning 4 pennies at the end of the third day, earning 8 pennies at the end of the fourth day, and so on?

\mathbf{x}	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
\mathbf{y}															

EXPONENTIAL FUNCTIONS

Exponential functions
 $$
y=a b^{x}
$$

1. Variable is in the power (exponent) versus the base
2. Start small and increase quickly or vice versa
3. Asymptotes (heads towards a horizontal line but never touches it)
4. Constant Ratios (multiply by same number every time)

ASYMPTOTES

An asymptote is a line that an exponential graph gets closer and closer to but never touches or crosses. The equation for the line of an asymptote for a function in the form of $f(x)=a b x$ is always $y=$ \qquad .

Identify the asymptote of each graph.
a.
b.

c.

ASYMPTOTES

d.

e.

f.

EVALUATING FUNCTIONS

- When graphing exponential functions, it is important that you understand how to evaluate an exponential function.
- Since the variable is in the exponent, you will evaluate the function differently that you did with a linear function. You will still substitute the value of x into the function, but will be taking that value as a power.
Example 1: Evaluate each exponential function.
a. $f(x)=2(3)^{x}$ when $x=5$
b. $\mathrm{y}=8(0.75)^{\mathrm{x}}$ when $\mathrm{x}=3$
c. $f(x)=4^{x}$, find $f(2)$.

GENERAL FORM

The general form of an exponential function is:

$y=a b^{x}$

Where a represents your starting or initial value/population and y-intercept

GRAPHING EXPONENTIAL FUNCTIONS

Graphing Exponential Functions Steps

1. Create an $x-y$ chart with 5 values for x (Safest values for $\mathrm{x}:-2,-1,0,1,2$).
2. Substitute those values into the function and record the y or $f(x)$ values.
3. Graph each ordered pair on a graph.

Graph the following:
a. $y=3(4)^{x}$

EXAMPLE 1

EXAMPLE 1
Graph the following:
a. $y=3(1)$

x	y
-3	.05
-2	$: 1875$
-1	$: 752^{24}$
0	$32^{x 4}$
1	1122^{24}
	$48^{2 \times 4}$

EXAMPLE 2

Graph the following:
b. $f(x)=2^{x}$

Y-intercept:
Asymptote:

$$
y=a b^{x}
$$

EXAMPLE 2
Graph the following:

$$
\begin{aligned}
& \text { b. } f(x)=x^{2 x}=1_{a}^{1}(2)^{x}
\end{aligned}
$$

Graph the following:
c. $y=3\left(\frac{1}{2}\right)^{x}$

EXAMPLE 3

EXÂMPLE 3
Graph the following:

EXAMPLE 4

Graph the following:
d. $f(x)=4(.25)^{x}$

THE Y-INTERCEPT

Think about it...
What did you notice about the y-intercept and the equation?

You have two ways you can find the y-intercept when given an equation: $y=3(4)^{x}$
a. \qquad
b. \qquad

SUMMARY

Equation	'a' values	'b' values	General Shape of Graph
$y=3(4)^{x}$			
$f(x)=2^{x}$			
$y=3\left(\frac{1}{2}\right)^{x}$			
$f(x)=4(.25)^{x}$			

IDENTIFYING GROWTH/DECAY

$$
\text { a. } y=4(3 / 4)^{x}
$$

b. $y=-2(3)^{x}$
c. $y=1 / 2(1.4)^{x}$
d. $y=(0.9)^{x}$
e. $y=3\left(\frac{5}{2}\right)^{x}$

