Unit 3A - Solving Quadratic Equations by Factoring

A quadratic equation is written in the Standard Form,

$$
a x^{2}+b x+c=0
$$

where a, b, and c are real numbers and $a \neq 0$.
Examples:

$$
\begin{aligned}
& x^{2}-7 x+12=0 \quad(\text { standard form }) \\
& x(x+7)=0 \\
& 3 x^{2}+4 x=15
\end{aligned}
$$

Unit 3A - Solving Quadratic Equations by Factoring

Zero Factor Property:
If a and b are real numbers and if $a b=0$, then $a=0$ or $b=0$.

Examples:

$$
\begin{gathered}
x(x+7)=0 \\
x=0 \quad x+7=0 \\
x=0 \quad x=-7
\end{gathered}
$$

Unit 3A - Solving Quadratic Equations by Factoring

Zero Factor Property:

If a and b are real numbers and if $a b=0$, then $a=0$ or $b=0$.

$$
\begin{array}{lrl}
& \text { Examples: } \\
& (x-10)(3 x-6)=0 \\
x-10=0 & & 3 x-6=0 \\
x-10+10=0+10 & 3 x-6+6=0+6 \\
x=10 & & 3 x=6 \quad \frac{3 x}{3}=\frac{6}{3} \quad x=2
\end{array}
$$

Unit 3A - Solving Quadratic Equations by Factoring

Solving Quadratic Equations:

1) Write the equation in standard form.
2) Factor the equation completely.
3) Set each factor equal to 0 .
4) Solve each equation.
5) Check the solutions (in original equation).

Unit 3A - Solving Quadratic Equations by Factoring

$$
\begin{aligned}
& x^{2}-3 x=18 \\
& x^{2}-3 x-18=0 \\
& \text { Factors of } 18: \\
& 1,18 \quad 2,9 \quad 3,6 \\
& (x+3)(x-6)=0 \\
& x+3=0 \quad x-6=0 \\
& x=-3 \quad x=6
\end{aligned}
$$

Unit 3A - Solving Quadratic Equations by Factoring

If the Zero Factor

Property is not used, then the solutions will be incorrect

$$
\begin{aligned}
& x^{2}-3 x=18 \\
& x(x-3)=18 \\
& x=18 \quad x-3=18 \\
& x-3+3=18+3 \\
& x=21
\end{aligned}
$$

$$
(18)^{2}-3(18)=18
$$

$$
324-54=18
$$

$$
270 \neq 18
$$

$$
(21)^{2}-3(21)=18
$$

$$
441-63=18
$$

$$
378 \neq 18
$$

I

Unit 3A－Solving Quadratic Equations by Factoring

$$
\begin{gathered}
x(x-4)=5 \\
x^{2}-4 x=5 \\
x^{2}-4 x-5=0 \\
(x+1)(x-5)=0 \\
x+1=0 \quad x-5=0 \\
x=-1 \quad x=5
\end{gathered}
$$

\square

保
\qquad

\square
路

$$
\square
$$

五

$$
0
$$

$$
2
$$

.

Unit 3A - Solving Quadratic Equations by Factoring

$$
\begin{aligned}
& \text { Unit 3A - Solving Quadratic Equations by Factoring } \\
& \left.\begin{array}{lc}
x(3 x+7)=6 & (x+3)(3 x-2)=0 \\
3 x^{2}+7 x=6 & x+3=0 \\
3 x^{2}+7 x-6=0 & x=-3
\end{array}\right] \begin{array}{l}
3 x=2 \\
\text { Factors of } 3: \\
1,3 \\
\text { Factors of } 6: \\
1,6 \quad 2,3
\end{array}
\end{aligned}
$$

 , 20
\qquad
\qquad
\qquad

Unit 3A - Solving Quadratic Equations by Factoring

$$
\begin{gathered}
9 x^{2}-24 x=-16 \\
9 x^{2}-24 x+16=0
\end{gathered}
$$

(9 and 16 are perfect squares)

$$
\begin{gathered}
(3 x-4)(3 x-4)=0 \\
3 x-4=0 \\
3 x=4 \\
x=\frac{4}{3}
\end{gathered}
$$

Unit 3A - Solving Quadratic Equations by Factoring

$$
\begin{gathered}
2 x^{3}-18 x=0 \\
2 x\left(x^{2}-9\right)=0 \\
2 x(x+3)(x-3)=0 \\
2 x=0 \quad x+3=0 \quad x-3=0 \\
x=0 \quad x=-3 \quad x=3
\end{gathered}
$$

Unit 3A - Solving Quadratic Equations by Factoring

$$
(x+3)\left(3 x^{2}-20 x-7\right)=0
$$

Factors of 3: 1, 3 Factors of 7: 1,7

$$
\begin{array}{r}
(x+3)(x-7)(3 x+1)=0 \\
x+3=0 \quad x-7=0 \\
x=-3 \\
x=7 \\
\\
\end{array}
$$

Unit 3A - Quadratic Equations and Problem
 Unit 3A Solving

water. The formula for calculating the height (h) of the diver after t seconds is: $\quad h=-16 t^{2}+64$. How long does it take for the diver to hit the surface of the water?

$$
\begin{gathered}
0=-16 t^{2}+64 \\
0=-16\left(t^{2}-4\right) \\
0=-16(t+2)(t-2) \\
t+2=0 \quad t-2=0 \\
t=2 \quad \text { seconds }
\end{gathered}
$$

Unit 3A - Quadratic Equations and Problem Solving

The square of a number minus twice the number is 63. Find the number.
x is the number.

$$
\begin{gathered}
x^{2}-2 x=63 \\
x^{2}-2 x-63=0
\end{gathered}
$$

Factors of 63: 1,63 3,21 7,9

$$
\begin{gathered}
(x+7)(x-9)=0 \\
x+7=0
\end{gathered} \quad x-9=0
$$

Unit 3A - Quadratic Equations and Problem Solving

The length of a rectangular garden is 5 feet more than its width. The area of the garden is 176 square feet. What are the length and the width of the garden?
$l \cdot w=A \quad$ The width is $w . \quad$ The length is $w+5$.
$(w+5) w=176$
$w^{2}+5 w-176=0$
Factors of 176:
$1,176 \quad 2,88 \quad 4,44$

$$
8,22 \quad 11,16
$$

$$
w^{2}+5 w=176
$$

$$
\begin{array}{cc}
(w-11)(w+16)=0 \\
w-11=0 & w+16=0 \\
w=11 & w>+16
\end{array}
$$

$$
w=11 \text { feet } \quad l=11+5
$$

$$
l=16 \text { feet }
$$

Unit 3A - Quadratic Equations and Problem Solving

Find two consecutive odd numbers whose product is 23 more than their sum?

$$
\begin{array}{c:cc}
x(x+2)=(x+x+2)+23 & x+5=0 & x-5=0 \\
x^{2}+2 x=2 x+25 & x=-5 & x=5
\end{array}
$$

Consecutive odd numbers: $x \quad x+2$.

$$
\begin{aligned}
x^{2}+2 x-2 x & =2 x \\
x^{2} & =25
\end{aligned}
$$

$$
5+2=7
$$

$$
x^{2}-25=25-25
$$

$$
-5,-3
$$

$$
5,7
$$

$$
\begin{gathered}
x^{2}-25=0 \\
(x+5)(x-5)=0
\end{gathered}
$$

Unit 3A - Quadratic Equations and Problem Solving

The length of one leg of a right triangle is 7 meters less than the length of the other leg. The length of the hypotenuse is 13 meters. What are the lengths of the legs? (Pythagorean Th.)

\[

\]

