Quadratic Functions - Characteristics

1. The axis of symmetry of a parabola does not always contain which point?
A. Maximum or Minimum
B. Vertex
C. Midpoint of the x-intercepts
D. y-intercept
2. What is the value of the function
$f(x)=x^{2}-5 x+2$ evaluated at $x=2$?
A. 16
B. 6
C. 2
D. -4

DAY 5 AGENDA 2/28/18

1. Warm-up: Kahoot Review on Transformations
https://play.kahoot.it/\#/? quizld=8b9f8aa9-9436-4c90-b5c7-aaefc35b5429
2. Warm-up: Kahoot Review on Characteristics
3. https://play.kahoot.it/\#/lobby?quizld=b8786039-88b0-4f27-baf1-f0776e4058d7
4. Quiz
5. Graphing Vertex Form

AFTER QUIZ

- Turn in HW on Day 3 - Characteristics (\#1-9)
- Pick up Day 5 HW
- You are going to work on the factoring problems on the back side Review a-i. This should be a review from Unit 3 A.

DAY 5: GRAPHING IN VERTEX FORM

Unit 3B: Quadratic Functions

VERTEX FORM

Vertex Form of a Quadratic Function:

$$
y=a(x-h)^{2}+k
$$

a determines how the graph opens
positive a, graph opens

\&
(h,lk) is our vertex.
NOTE: Our vertex is at (h, k), NOT (-h, k).

IDENTIFYING THE VERTEX

Find the vertex of the following:

1) $y=(x-18)^{2}+9$

Vertex $=18,9$
2) $y=4(x+6)^{2}-7$

Vertex $=(-6,-7)$
3) $y=(x-2)^{2}-2$
vertex $=2,-2$

Find the vertex for each of the following quadratics and determine whether the graph opens up or down:
a) $y=(x-1)^{2}-2$
b) $y=-3(x+4)^{2}+1$
c) $y=2 x^{2}+3$
d) $y=-(x-3)^{2}$

Vertex $=\left(\frac{1}{1} \cdot \frac{2}{1}\right)$ Graph Opens
 because a is ρ
Vertex $=(L), 1)$ Graph Opens
 because a is
Graph Opens
 because a is

Vertex $=(\Im, O)$ Graph Opens \qquad because a is n

GRAPHING IN VERTEX FORM

1) Find the vertex (h, k).
2) Use your vertex as the center for your table and determine two x values to the left and right of your h value and substitute those x values back into the equation to determine the y values.

- Using practice problem number 3, let's practice filling in our table.

$$
V=2,-2 \quad y=(x-2)^{2}-2 ~ 子 \quad \begin{array}{|l|c|c|c|c|c|}
\hline x & 0 & 1 & 2 & 3 & 4 \\
\hline y & 2 & -1 & -2 & -1 & 2 \\
\hline
\end{array}
$$

3) Plot your points and connect them from left to right!

EXAMPLE 1

Example 1: Graph $y=(x-1)^{2}-2$.
Vertex $=(1,-2)$

\mathbf{x}	-1	0	1	2	3
\mathbf{y}	2	-1	-2	-1	2

Example 2: Graph: $y=-3(x+4)^{2}+1$.

\mathbf{x}	-6	-5	-4	-3	-2
y	-11	-2	1	-2	-11

EXAMPLE 3

$$
\text { Example 3: Graph y = } 2 x^{2}+3
$$

$$
\text { Vertex }=(\stackrel{\Im}{5})
$$

x	-2	-1	0	1	2
y	11	5	3	5	1

EXAMPLE 4

Example 4: Graph: $y=-(x-3)^{2}$.
Vertex $=1,0$

x	1	2	3	4	5
y	-4	-1	0	-1	-4

Graphing Quadratic Functions

Vertex Form

$$
y=a(x-h)^{2}+k
$$

The AXIS OF SYMMETRY is $\boldsymbol{x}=\boldsymbol{h}$. This is the "inverse of the inside."
The VERTEX is on the axis of symmetry line at (h,k). The is what you get if you "inverse the inside and keep the constant." Look for this vertex in your table. The a-value determines whether your graph "goes up" on both sides or "goes down" on both sides of your vertex.

The vertex is a MINIMUM if the a-value is positive because it goes up on both sides, looks like a " U," and has a low point. The vertex is a MAXIMUM if the a-value is negative because it goes down on both sides, looks like an " \cap," and has a high point.

A good PARABOLA has at least five points. Make a table of values with your vertex in the middle and plot them to make a good graph.

Your parabola looks just like the parent function but might include some transformations. If the a-value is negative, your graph has been REFLECTED over the x-axis. If the a-value (ignoring the negative) is less than one, your graph has been SHRUNK or COMPRESSED vertically. If the a-value (ignoring the negative) is bigger than one, your graph has been STRETCHED vertically. The location of the vertex determines where the graph has been SHIFIED or TRANSLATED.

Example:
$y=-2(x+1)^{2}+8$
$a=-2 \quad h=-1 \quad k=8$
Vertex: $(-1,8)$

X	Y
-3	0
-2	6
-1	8
0	6
1	0

This graph is a parabola that has been reflected over the x-axis, stretched vertically, and translated left 1 unit and up 8 units.

Practice

1. $y=(x+3)^{2}-5$

2. $y=-(x-2)^{2}-5$
$A=-1 H=2 K=-5 \frac{x \mid y}{0-9}$
Vertex? $(2,-5)$

Transformations?
Reflectoverx-axis Right by 2 units down by 5 units

Up or Down?
Maximum br Minimum?

POST-IT CHECK!

Create a sketch of a graph that has a range of $y \geq-4$, an axis of symmetry of $x=-2$, and zeros at -4 and 0 .

3.

$$
\begin{aligned}
& y=-2(x-7)^{2}+8 \\
& A=-2 H=7 K=8 \\
& \text { Vertex }(7,8)
\end{aligned}
$$

Transformations?
Reflect over x-axis

x	y
5	0
6	6
7	8
8	6
9	0

Vertical stretch by
Scale factor of 2
Right 7 units
up 8 units
Up or(Down?
Maximum) or Minimum?

4.

$$
\begin{aligned}
& y=-(x+2)^{2} \\
& A=-1 H=-2 K=0 \\
& \text { Vertex? }(-2,0)
\end{aligned}
$$

Transformations?
Replectover $x-a x$ is

x	y
-4	-4
-3	-1
-2	0
1	-1
0	-4

Up or (own ?
(Maximum)or Minimum?

$$
\begin{aligned}
& \text { 5. } y=2(x+3)^{2}-6 \\
& A=H=K= \\
& \text { Vertex? } \\
& \text { Transformations? } \\
& \text { Up or Down? } \\
& \text { Maximum or Minimum? }
\end{aligned}
$$

6. $y=-\frac{1}{2}(x+4)^{2}+7$
$A=H=K=$
Vertex?

Transformations?

Up or Down?
Maximum or Minimum?

USING A GRAPHING CALCULATOR

Use a graphing calculator to graph our last example problem, example 4: $y=-(x-3)^{2}$

1. Hit $\mathbf{Y}=$ and enter the equation into y_{1}.
2. Hit Graph (Hit Zoom, then 6 to get back to a standard viewing window, if necessary).
3. You can also use the table on the graphing calculator to compare to your table and note the symmetry along the vertex. Hit $\mathbf{2 n d}^{\text {nd }}$ followed by Graph (you really want the Table feature). Scroll through the table until you find where the y_{1} values stop decreasing and begin increasing, the point it switches at is our vertex.
