Quadratic Functions – Characteristics

- 1. The axis of symmetry of a parabola does not always contain which point?
- A. Maximum or Minimum
- B. Vertex
- C. Midpoint of the x-intercepts
- D. y-intercept
- 2. What is the value of the function $f(x) = x^2 5x + 2$ evaluated at x = 2?
- A. 16
- B. 6
- C. 2
- D. -4

DAY 5 AGENDA 2/28/18

1. Warm-up: Kahoot Review on Transformations

https://play.kahoot.it/#/?quizld=8b9f8aa9-9436-4c90b5c7-aaefc35b5429

2. Warm-up: Kahoot Review on Characteristics

- 3. https://play.kahoot.it/#/lobby?quizld=b8786039-88b0-4f27-baf1-f0776e4058d7
- 4. Quiz
- 5. Graphing Vertex Form

AFTER QUIZ

- Turn in HW on Day 3 Characteristics (#1-9)
- Pick up Day 5 HW
- You are going to work on the factoring problems on the back side -Review a - i. This should be a review from Unit 3A.

DAY 5: GRAPHING IN VERTEX FORM

Unit 3B: Quadratic Functions

VERTEX FORM

Vertex Form of a Quadratic Function:

$$y = a(x - h)^2 + k$$

a determines how the graph opens

positive a, graph opens

negative **a**, graph opens

 $(\underline{\ \ \ },\underline{\ \ \ \ })$ is our vertex.

NOTE: Our vertex is at (h, k), **NOT** (-h, k).

IDENTIFYING THE VERTEX

Find the vertex of the following:

1)
$$y = (x - 18)^2 + 9$$
 Vertex = $(18, 9)$

2)
$$y = 4(x + 6)^2 - 7$$
 Vertex = $(\frac{6}{7}, \frac{7}{7})$

3)
$$y = (x-2)^2-2$$
 Vertex = $(2, -2)$

Find the vertex for each of the following quadratics and determine whether the graph opens up or down:

a)
$$y = (x-1)^2 - 2$$

b)
$$y = -3(x + 4)^2 + 1$$

Vertex =
$$(\ \ \)$$
 Graph Opens $\ \ \ \ \$ because a is

c)
$$y = 2x^2 + 3$$

c)
$$y = 2x^2 + 3$$
 Vertex = $(0, 3)$ Graph Opens $(3, 3)$ because a is

d)
$$y = -(x - 3)^2$$

_ because a is
$$\underline{Y}$$

GRAPHING IN VERTEX FORM

- Find the vertex (h, k).
- 2) Use your vertex as the center for your table and determine two x values to the left and right of your h value and substitute those x values back into the equation to determine the y values.
 - Using practice problem number 3, let's practice filling in our table.

$$y = (x-2)^2 - 2$$

x	0	l	Q	η	4
у	2	1	ا لا	1	Ų

3) Plot your points and connect them from left to right!

Example 1: Graph $y = (x - 1)^2 - 2$.

x	-1	0		2	3
у	2	1	7	-1	Ŋ

Example 2: Graph: $y = -3(x + 4)^2 + 1$.

x	-6	-5	-4	رم ا	N
у	- 11	-2	Į	1	- 11

Example 3: Graph $y = 2x^2 + 3$.

x	-2	- 1	0	1	Z
у	41	5	كم	Ŋ	11

Example 4: Graph: $y = -(x - 3)^2$.

x	1	B	3	4	5
у	1	\	0	- 1	-4

Graphing Quadratic Functions Vertex Form

$$y = a(x-h)^2 + k$$

The AXIS OF SYMMETRY is x = h. This is the "inverse of the inside."

The <u>VERTEX</u> is on the axis of symmetry line at (h, k). The is what you get if you "inverse the inside and keep the constant." Look for this vertex in your table. The a-value determines whether your graph "goes up" on both sides or "goes down" on both sides of your vertex.

The vertex is a $\underline{\text{MINIMUM}}$ if the a-value is positive because it goes up on both sides, looks like a "U," and has a low point. The vertex is a $\underline{\text{MAXIMUM}}$ if the a-value is negative because it goes down on both sides, looks like an "\(\Omega\)," and has a high point.

A good <u>PARABOLA</u> has at least five points. Make a table of values with your vertex in the middle and plot them to make a good graph.

Your parabola looks just like the parent function but might include some transformations. If the a-value is negative, your graph has been REFLECTED over the x-axis. If the a-value (ignoring the negative) is less than one, your graph has been SHRUNK or COMPRESSED vertically. If the a-value (ignoring the negative) is bigger than one, your graph has been STRETCHED vertically. The location of the vertex determines where the graph has been SHIFTED or TRANSLATED.

Example:

$$y = -2(x+1)^2 + 8$$

$$a = -2$$
 $h = -1$ $k = 8$

Vertex: (-1,8)

This graph is a parabola that has been reflected over the x-axis, stretched vertically, and translated left 1 unit and up 8 units.

Practice

2.
$$y = -(x-2)^2 - 5$$

 $A = -1 H = 2 K = -5$
Vertex? $(2, -5)$

Х	у
0	-9
١	-6
2	-6
3	-6
4	-9

Transformations?
Replect over x-axis
Right by 2 units

down by 5 units

Up or Down?

Maximum or Minimum?

POST-IT CHECK!

Create a sketch of a graph that has a range of $y \ge -4$, an axis of symmetry of x = -2, and zeros at -4 and 0.

3.
$$y = -2(x-7)^2 + 8$$

 $A = -2H = 7K = 8$
Vertex? $(7, 8)$

Χ	у
Ø	0
6	ی
	8
8	6
a	

Transformations? Reflect over x-axis Vertical stretch by Scale factor of 2 Right Tunits Up 8 units Up or Down?

Maximum)or Minimum?

4.
$$y = -(x+2)^2$$

$$A = -1H = -2K = 0$$
Vertex? $(-2,0)$

$$-\frac{3}{-2}$$

$$-\frac{1}{-2}$$
Replectorer x-axis
$$0 = -4$$
left by a units

Up or Qown?

Maximum or Minimum?

5.
$$y = 2(x + 3)^2 - 6$$

 $A = H = K =$
Vertex?

Transformations?

Up or Down? Maximum or Minimum?

6.
$$y = -\frac{1}{2}(x+4)^2 + 7$$

 $A = H = K =$

ху

Vertex?

Transformations?

Up or Down? Maximum or Minimum?

USING A GRAPHING CALCULATOR

Use a graphing calculator to graph our last example problem, example 4: y= -(x - 3)2

- 1. Hit Y = and enter the equation into y₁.
- 2. Hit **Graph** (Hit **Zoom**, then **6** to get back to a standard viewing window, if necessary).
- 3. You can also use the table on the graphing calculator to compare to your table and note the symmetry along the vertex. Hit **2**nd followed by **Graph** (you really want the Table feature). Scroll through the table until you find where the y₁ values stop decreasing and begin increasing, the point it switches at is our vertex.