Unit 3A Solving Quadratic Equations by Finding Square Roots

- Sometimes a quadratic equation can be solved by taking square roots.
- It's OK to take the square root of an equation, as long as you do it to **BOTH SIDES.**
- Simple example: $x^2 = 25$

$$x = \pm 5$$

Use a \pm when you have to insert it into the problem!!!

Vocabulary

• Radical sign

$$\sqrt{}$$

- Radicand
 - Number under radical sign
- Radical
 - Expression itself is the radical

 $\sqrt{16}$, 16 is radicald, $\sqrt{16}$ is radical

Properties of Square Roots

Product Property

$$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$$

$$\sqrt{9x^2} = \sqrt{9} \cdot \sqrt{x^2}$$
$$= 3x$$

Quotient Property

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

$$\sqrt{\frac{16}{25}} = \frac{\sqrt{16}}{\sqrt{25}} = \frac{4}{5}$$

Examples

- Find the largest factor of the radicand that is a perfect square
- Take square root of the perfect square factor
- Other factor stays under radical

a)
$$\sqrt{45} = \sqrt{9} \cdot \sqrt{5} = 3\sqrt{5}$$

b)
$$\sqrt{8} \cdot \sqrt{15} = \sqrt{120} = \sqrt{4} \cdot \sqrt{30} = 2\sqrt{30}$$

(c)
$$\sqrt{\frac{2}{9}} = \frac{\sqrt{2}}{\sqrt{9}} = \frac{\sqrt{2}}{3}$$

001

001

d.
$$3\sqrt{12} \cdot \sqrt{6}$$

$$3\sqrt{4}\sqrt{3} \cdot \sqrt{6}$$

$$3 \cdot 2\sqrt{3} \cdot \sqrt{6}$$

$$6\sqrt{18}$$

$$6\sqrt{9}\sqrt{2}$$

$$6 \cdot 3\sqrt{2}$$

 $18\sqrt{2}$

Method 2

 $3\sqrt{72}$

 $3\sqrt{36}\sqrt{2}$

 $3 \cdot 6\sqrt{2}$

 $18\sqrt{2}$

Rationalizing Denominator

- Cannot have radicals in denominator
- To remove radicals from denominator:
 - Simplify all radicals
 - Multiply top and bottom by radical in denominator

$$\sqrt{\frac{3}{5}} = \frac{\sqrt{3}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{15}}{\sqrt{25}} = \frac{\sqrt{15}}{5}$$

Rationalizing Denominator

• Simplify by rationalizing the denominator:

$$\sqrt{\frac{8x^2}{3}} = \frac{\sqrt{8x^2}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{24x^2}}{\sqrt{9}}$$

$$=\frac{\sqrt{4x^2}\sqrt{6}}{3} = \frac{2x\sqrt{6}}{3}$$

(Day 2)

• Review from last time!

- 001
- Get the term that is squared by itself
- Take square root of both sides (when you put in the square root)
 - Be sure to include positive and negative answers
- Get x by itself if necessary

Solving a Quadratic Equation

x = 3 - 4

• Ex:
$$3x^2 - 5 = 7$$

 $3x^2 = 12$
 $x^2 = 4$
 $x = +2$

• Ex:
$$\frac{1}{2}(x-3)^2 = 8$$

 $(x-3)^2 = 16$
 $x-3 = \pm 4$
 $x = 3 \pm 4$

Solve

5.
$$3-5x^2 = -9$$

$$-5x^2 = -12$$

$$x^2 = \frac{12}{5}$$

$$x = \pm \sqrt{\frac{12}{5}} = \pm \frac{\sqrt{12}}{\sqrt{5}} = \pm \frac{\sqrt{4} \cdot \sqrt{3}}{\sqrt{5}} = \pm \frac{2\sqrt{3}}{\sqrt{5}}$$

$$=\pm\frac{2\sqrt{3}}{\sqrt{5}}\cdot\frac{\sqrt{5}}{\sqrt{5}} = \pm\frac{2\sqrt{15}}{5}$$

Solve

6.
$$3(x-2)^2 = 21$$

 $(x-2)^2 = 7$

$$x - 2 = \pm \sqrt{7}$$

$$x = 2 \pm \sqrt{7}$$

Solve

7.
$$\frac{1}{5}(x-4)^2=6$$

$$(x-4)^2 = 30$$

$$x - 4 = \pm \sqrt{30}$$

$$x = 4 \pm \sqrt{30}$$

Solving a Quadratic Equation

• Ex: $3(x-5)^2 = 81$ $(x-5)^2 = 27$ $x-5 = \pm \sqrt{27}$ $x = 5 \pm \sqrt{27}$

$$x = 5 \pm \sqrt{27}$$

$$x = 5 \pm \sqrt{9}\sqrt{3}$$

$$x = 5 \pm 3\sqrt{3}$$

