Warm-Up Quick Check - Graphing

1. Which of the graphs below best represents the function f(x) = (x + 4)(x - 1)? (x + 4)(x - 1)?

2. Determine which graph matches the characteristics of $f(x) = -x^2 - 4x + 5$

Agenda for 3/7/18

- Warm-Up: Quick Check (5 mins)
- Glue-in Orange Foldable in your note book (3 mins)
- 3. Day 8.5 Converting between Forms (30 mins)
- 4. Unit 3B Quiz 2 (45 mins)

PUTTING IT ALL TOGETHER!

Graphing Vertex Form

$$y = a(x - h)^2 + k$$

(h, k) is the vertex

To Graph:

- 1. Determine vertex.
- 2. Place vertex in middle of x-y table.
- 3. Create two x-values to the right and left of the vertex
- 4. Use the table feature in graphing calculator or substitute each x-value into equation to find the y-values.
- 5. Plot points and connect.

Example

Graph
$$y = -3(x + 4)^2 + 1$$
.

X	у
-6	-11
-5	ا س
-4	1
-3	b
-2	- 11

Graphing Standard Form

$$y = ax^2 + bx + c$$

(0, c) is the y-intercept

To Graph:

- 1. Label a, b, c.
- 2. Use $X = \frac{-b}{2a}$ to find x-value of vertex.
- 3. Substitute x-value into the equation to find y-value
- 4. Place vertex in middle of x-y table.
- Create two x-values to the right and left of the vertex.
- 6. Use the table feature in graphing calculator or substitute each x-value into equation to find the y-values.
- 7. Plot points and connect.

Example

Q = 1b = -2 Graph $y = x^2 - 2x - 1$ Y = 10 Y = 10 Y = 10 Y = 10

X	У
— I	2
0	- 1
1	- 2
2	-1
3	2

$$X = \frac{-b}{3a}$$

$$X = \frac{-(-2)}{3(1)} = \frac{2}{3} = 1$$

$$f(1) = (1)^{2} - 2(1) - 1$$

$$f(1) = -2$$

$$(-1)^{2} - 2(-1) - 1$$

$$1 + 2 - 1$$

Factoring Difference of Squares

Graphing Intercept Form

$$y = a(x - p)(x - q)$$

(p, 0) & (q, 0) are x-intercepts

To Graph:

- 1. Identify your x-intercepts.
- 2. Use the formula $X = \frac{p+q}{2}$ to find x-value of the

vertex

- 3. Substitute x-value into the equation to find y-value.
- 4. Plot intercepts and vertex.

*You can always create an x-y table and plot more than the three points.

Day 8.5 Converting between Forms

Use both Graphic Organizers!

Intercept to Standard

Directions: Convert from intercept form to standard form. Then name the y-intercept.

a.
$$y = (x - 3)(x + 4)$$

c.
$$y = 2(x + 5)(x + 1)$$

Form: ____

Form: _____

Y-int: _____

Y-int: _____

Y-int: _____

Vertex to Standard

Directions: Convert from vertex form to standard form. Then name the y-intercept.

a.	У	=	(x	+	5	2	-	2	

b.
$$y = -(x - 2)^2 + 6$$

Form: _____

Form:

Form: <u>9 = -3x²+6x+</u>

Y-int:

Y-int:

Y-int: _____

Standard to Intercept

Directions: Convert from standard form to intercept form. Then name the x-intercepts.

a.
$$y = x^2 + 2x - 15$$

b.
$$y = x^2 - 5x - 14$$

$$-(x^{2}-3x-4)$$

$$-4$$

$$-4$$

$$-4$$

$$-3$$

Standard to Vertex

Directions: Convert from standard form to vertex form. Then name the vertex.

Intercept to Vertex

Directions: Convert from intercept form to vertex form. Then name the vertex.

Form: $y = \frac{y}{(x+2)^2 - 8}$ Vertex: _____ Vertex: ____ Vertex: ____ Vertex: (-2, -8)

Unit 3B Quiz - Graphing Quadratic Functions 3/7/18

- Answer all 8 questions.
- Show all work to earn full credit!
- Do your very best; you can

