Day 8 - Different Forms of Quadratics Practice Assignment

Name:
Date: \qquad

Directions: For the table below, identify each characteristic that can be EASILY determined from looking at the equation (requires no calculations). You will not fill in answers for every box.

Equation	Graph Opens	Vertex	X-Intercepts	Y-Intercept
1. $y=(x+4)^{2}-5$				
$2 . y=-2(x+3)(x-2)$				
$3 \cdot y=-x^{2}+3$				
4. $y=x^{2}+5 x-14$				
$5 \cdot y=-(x+1)^{2}$				
6. $y=(x-7)(x+5)$				
7. $y=x^{2}+8 x+12$				
8. $y=-2(x-3)^{2}+1$				

Convert the following equations to the specific form and give the additional characteristics you can determine from the new form.

Equation 1 to standard:	Equation 4 to factored:	Equation 6 to standard:	Equation 7 to vertex:

Review: Identify the form each quadratic equation is in. Then graph the equations by calculating the vertex and creating an xy chart.
9. Graph $y=(x-4)(x+2)$

Form: \qquad

10. Graph $y=x^{2}+4 x-5$

Form: \qquad

11. Graph $y=-2(x+3)^{2}-2$

Form: \qquad

