Simplifying Radicals

Perfect Square	Number is NOT a Perfect Square
List of Perfect Squares: If the problem contains a perfect square: - Find the square root - The square root would be an integer Examples: 1) $\sqrt{25}$ 2) $-\sqrt{144}$	If the problem contains a number that is not a perfect square: - Use the product of two square roots - One of these roots should be a perfect square - Find the square root of the perfect square, leave the other root as is. Examples: 1) $\sqrt{12}=\sqrt{ } \cdot \sqrt{ }$ 2) $\sqrt{32}=\sqrt{ } \cdot \sqrt{ }$
Exponent is even	Exponent is odd
If the problem contains an even exponent: - Divide the exponent by 2 Examples: 1) $\sqrt{x^{4}}$ 2) $\sqrt{x^{4} y^{2} z^{6}}$	If the problem contains an odd exponent: - Break the problem up into 2 powers - One should have the highest even exponent - The other exponent should be 1 - The sum of both exponents should be the original exponent Examples: 1) $\sqrt{x^{5}}=\sqrt{ } \cdot \sqrt{ }$ 2) $\sqrt{y^{11}}=\sqrt{ } \cdot \sqrt{ }$

