Solving Quadratic Equations by
 Completing the Square

Perfect Square Trinomials

Examples
$x^{2}+6 x+9$
$x^{2}-10 x+25$
$x^{2}+12 x+36$

Creating a Perfect Square Trinomial

In the following perfect square trinomial, the constant term is missing.
$x^{2}+14 x+$
Find the constant term by squaring half the coefficient of the linear term.
$(14 / 2)^{2}$
$x^{2}+14 x+49$

Perfect Square Trinomials

Create perfect square trinomials.
$x^{2}+20 x+$
100
$x^{2}-4 x+$
4
$x^{2}+5 x+$
25/4

Solving Quadratic Equations by Completing the Square

Solve the following equation by completing the

$$
x^{2}+8 x-20=0
$$

Step 1: Move quadratic term, and linear term to left

$$
\boldsymbol{x}^{2}+8 \boldsymbol{x}=20
$$ equation

Solving Quadratic Equations by Completing the Square

Step 2: Find the term that completes the square on the left side of the equation. Add that term to both sides.

$$
\boldsymbol{x}^{2}+8 \boldsymbol{x}+\square=20+\square
$$

$$
\frac{1}{2} \bullet(8)=4 \text { then square it, } 4^{2}=16
$$

Solving Quadratic Equations by Completing the Square

Step 3: Factor the perfect square trinomial on the left side of the equation. Simplify the right side of the equation.

$$
x^{2}+8 x+16=20+16
$$

$$
\begin{array}{r}
(x-4)(x-4)=36 \\
(x-4)^{2}=36
\end{array}
$$

Solving Quadratic Equations by Completing the Square

Step 4:
Take the
square
root of
each side

$$
\begin{aligned}
\sqrt{(x+4)^{2}} & =\sqrt{36} \\
(x+4) & = \pm 6
\end{aligned}
$$

Solving Quadratic Equations by Completing the Square

Step 5: Set
up the two possibilities and solve

$$
x=-4 \pm 6
$$

$$
x=-4-6 \text { and } x=-4+6
$$

$$
\boldsymbol{x}=-10 \text { and } \mathrm{x}=2
$$

Completing the Square-Example \#2

Solve the following equation by completing the square:

$$
2 x^{2}-7 x+12=0
$$

Step 1: Move quadratic term, and linear term to left side of the equation,

$$
2 x^{2}-7 x=-12
$$ the constant to the right side of the equation.

Solving Quadratic Equations by Completing the Square

$$
2 x^{2}-7 x+\square=-12+\square
$$

Step 2: Find the term that completes the square on the left side of the equation. Add that term to both sides.

The quadratic coefficient must be equal to 1 before you complete the square, so you must divide all terms by the quadratic coefficient first.

$$
x^{2}-\frac{7}{2} x+\frac{49}{16}=-6+\frac{49}{16}
$$

Solving Quadratic Equations by Completing the Square

Step 3: Factor the perfect square trinomial on the left side of the equation. Simplify the right side of the equation.

$$
\begin{aligned}
& x^{2}-\frac{7}{2} x+\frac{49}{16}=-6+\frac{49}{16} \\
& \left(x-\frac{7}{4}\right)^{2}=-\frac{96}{16}+\frac{49}{16} \\
& \left(x-\frac{7}{4}\right)^{2}=-\frac{47}{16}
\end{aligned}
$$

Solving Quadratic Equations by Completing the Square

Step 4:
Take the square root of
each side

$$
\begin{gathered}
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{-47}{16}} \\
\left(x-\frac{7}{4}\right)= \pm \frac{\sqrt{-47}}{4} \\
x=\frac{7}{4} \pm \frac{i \sqrt{47}}{4} \\
x=\frac{7 \pm i \sqrt{47}}{4}
\end{gathered}
$$

Solving Quadratic Equations by Completing the Square

Try the following examples. Do your work on your paper and then check your answers.

1. $x^{2}+2 x-63=0$
2. $x^{2}+8 x-84=0$
3. $x^{2}-5 x-24=0$
4. $x^{2}+7 x+13=0$
5. $3 x^{2}+5 x+6=0$

$$
\begin{aligned}
& \text { 1. }(-9,7) \\
& \text { 2. }(6,-14) \\
& \text { 3. }(-3,8) \\
& \text { 4. }\left(\frac{-7 \pm i \sqrt{3}}{2}\right) \\
& \text { 5. }\left(\frac{-5 \pm i \sqrt{47}}{6}\right)
\end{aligned}
$$

