Unit 1-Dimensional analysis

Dimensional Analysis

Used to convert between units...

Equivalence Statement: Relates the same amount (quantity) in 2 different units.

- Ex. 2.54 cm = 1 inch.
- conversion factors: relates equivalence in a ratio

<u>2.54cm</u>	or	<u>1 in</u>
1 in		2.54 cm

Dimensional Analysis-

- Converting from a known unit to an unknown unit
- 3 steps:
 - 1. What do I know? (underline)
 - 2. What do I want to know? (circle)
 - 3. How do I get there (equivalence statements)?

To convert...

- Use equivalence statements
- •Treat the units as variables/ numbers.
- •Arrange the measurements so that they will cancel out.

Ex- A: A new baby weighs 7.8 lb, What is it's mass in kilograms?

1kg = 2.205 lb.

7.8 /px $\frac{1 \text{ kg}}{2.205 /p}$ = 3.5 kg

Ex- B: How many seconds are in 2 days?

1 day = 24 hrs, 1 hr = 60 min, 1 min = 60 s

$2 days \times \frac{24 h/rs}{1 day} \times \frac{60 m/n}{1 hr} \times \frac{60 s}{1 m/n} = 172800 s$

Examples: Convert the following: <u>show all of your work!!!!</u>

Practice A: 360 seconds to milliseconds

(note: 1000 milliseconds = 1 second)

A. 360 seconds to milliseconds \rightarrow

360 s x <u>1000 ms</u> = 360,000 ms 1 s

Examples: Convert the following: <u>show all of your work!!!!</u>

Practice B: 4.98 feet to centimeters

(note: 1 ft = 12 in and 2.54 cm = 1 in)

How did you do?

B. 4.98 feet to $cm \rightarrow$

4.98 ft x <u>12 in</u> x <u>2.54 cm</u> = 152 cm 1 ft 1 in

Examples: Convert the following: <u>show all of your work!!!!</u>

Practice C: 1500 seconds to hours

(note: $60 \sec = 1 \min \text{ and } 60 \min = 1 \text{ hr}$)

How did you do?

C. 15000 seconds to hours \rightarrow

Examples: Convert the following: <u>show all of your work!!!!</u>

Practice D: 75 m to km

(note: 1000m = 1km)

D. 75 m to $km \rightarrow$

$\underline{75 \text{ m}} \text{ x}$ $\underline{1 \text{ km}} = 0.075 \text{ km}$ 1000m