

A) Unit 3: Interpret the Structure of Expressions

- 1. Which expression is equivalent to $121x^2 64y^2$? $Q = 11 \times 10^{-1}$
 - **A.** (11x 16y)(11x + 16y)
 - **B.** (11x 16y)(11x 16y)
 - $\mathbf{C} \cdot (11x + 8y)(11x + 8y)$
 - **D.** (11x + 8y)(11x 8y)
- 2. What is a common factor for the expression $24x^2 + 16x + 144$?
 - A. 16
 - **B.** 8x
 - **C.** $3x^2 + 2x + 18$
 - **D.** $8(x-2)(3x^2+9)$
- 3. Which of these shows the complete factorization of $6x^2y^2 9xy 42$?
 - **A.** $3(2xy^2 7)(xy^2 + 2)$
 - **B.** (3xy + 6)(2xy 7)
 - (c)3(2xy 7)(xy + 2)
 - **D.** $(3xy^2 + 6)(2xy^2 7)$

b= 84

B) Unit 3: Write Expressions in Equivalent Forms to Solve Problems

1. What are the zeros of the function represented by the quadratic Q = 2 b = 10 = -3expression $2x^2 + x - 3$?

B.
$$x = -\frac{2}{3}$$
 and $x = 1$

C.
$$x = -1$$
 and $x = \frac{2}{3}$

D.
$$x = -1$$
 and $x = -\frac{3}{2}$

2. What is the vertex of the graph of $f(x) = x^2 + 10x - 9$?

$$k = \frac{-b}{2a} = \frac{-10}{2(1)}$$

3. Which of these is the result of completing the square for the expression

$$x^2 + 8x - 30$$
?

A.
$$(x + 4)^2 - 30$$

B.
$$(x + 4)^2 - 46$$

B.
$$(x + 4)^2 - 46$$

C. $(x + 8)^2 - 30$

D.
$$(x + 8)^2 - 94$$

$$\frac{2}{2} = (4)^{2} = (6)$$

$$\frac{2}{4} = 30 + 16$$

$$\frac{2}{4} = 46$$

$$\frac{2}{4} = 46$$

4. The expression $-x^2 + 70x - 600$ represents a company's profit for selling x items. For which number(s) of items sold is the company's profit equal to \$0?

0 items

$$-x^2+70x-600=0$$

B. 35 items

C. 10 items and 60 items

D. 20 items and 30 items

C) Unit 3: Create Equations That Describe Numbers or Relationships

1. A garden measuring 8 feet by 12 feet will have a walkway around it. The walkway has a uniform width, and the area covered by the garden and the walkway is 192 square feet. What is the width of the walkway?

A. 2 feet

B. 3.5 feet

C. 4 feet

D. 6 feet

2. The formula for the area of a circle is $A = \pi r^2$. Which equation shows the formula in terms of r?

A.
$$r = \frac{2A}{\pi}$$

$$B. \quad r = \frac{\sqrt{A}}{\pi}$$

D.
$$r = \frac{A}{2\pi}$$

D) Unit 3: Solve Equations and Inequalities in One Variable

- 1. What are the solutions to the equation $2x^2 2x 12 = 0$?
 - **A.** x = -4, x = 3
- $2(x^2-x-6)=0$
- **B.** x = -3, x = 4
- (c.) x = -2, x = 3
- **D.** x = -6, x = 2

- 2. What are the solutions to the equation $6x^2 x 40 = 0$?
 - A. $x = -\frac{8}{3}$, $x = -\frac{5}{2}$ $\alpha = 6$ b = -1 c = -40
 - B. $x = -\frac{8}{3}, x = \frac{5}{2}$ $\times = -\frac{(-1) \pm \sqrt{(-1)^2 4(6)(-40)}}{2(6)}$

 - **D.** $x = -\frac{5}{2}, x = \frac{8}{3}$
- C. $x = \frac{5}{2}, x = \frac{8}{3}$ $x = \frac{1 + 31}{12} = x = \frac{1 + 31}{12}$ or $\frac{1 31}{12}$ D. $x = -\frac{5}{2}, x = \frac{8}{3}$ $x = \frac{1 + 31}{12} = x = \frac{1 + 31}{12}$ or $\frac{1 31}{12}$
- 3. What are the solutions to the equation $x^2 5x = 14$? A. x = -7, x = -2

 - **B.** x = -14, x = -1
 - **C.** x = -2, x = 7**D.** x = -1, x = 14

4. An object is thrown in the air with an initial velocity of 5 m/s from a height of 9 m. The equation $h(t) = -4.9t^2 + 5t + 9$ models the height of the object in meters after t seconds.

About how many seconds does it take for the object to hit the ground? Round your answer to the nearest tenth of a second. $t = -5 \pm 1$

- A. 0.940 second
- B. 1.50 seconds

C. 2.00 seconds

D. 9.00 seconds

 $t = -5 \pm 14.2$ $-9.8 = -0.94 \text{ or } 1.96 \approx 2 \text{ seconds}$

E) Unit 3: Build a Function That Models a Relationship between Two Quantities

- 1. Which statement BEST describes the graph of f(x + 6)?
 - **A.** The graph of f(x) is shifted up 6 units.
 - **B.** The graph of f(x) is shifted left 6 units.
 - C. The graph of f(x) is shifted right 6 units.
 - **D.** The graph of f(x) is shifted down 6 units.
- 2. Which of these is an even function?
 - **A.** $f(x) = 5x^2 x$
 - **B.** $f(x) = 3x^3 + x$
 - **C** $f(x) = 6x^2 8$
 - **D.** $f(x) = 4x^3 + 2x^2$
- 3. Which statement BEST describes how the graph of $g(x) = -3x^2$ compares to the graph of $f(x) = x^2$?
- **A.** The graph of g(x) is a vertical stretch of f(x) by a factor of 3.
 - **B.** The graph of g(x) is a reflection of f(x) across the x-axis.
 - **C.** The graph of g(x) is a vertical shrink of f(x) by a factor of $\frac{1}{3}$ and a reflection across the x-axis.
- **D.** The graph of g(x) is a vertical stretch of f(x) by a factor of 3 and a reflection across the x-axis.

F) Unit 3: Interpret Functions That Arise in Applications in Terms of the Context

1. A flying disk is thrown into the air from a height of 25 feet at time t = 0. The function that models this situation is $h(t) = -16t^2 + 75t + 25$, where t is measured in seconds and h is the height in feet. What values of t best describe the times when the disk is flying in the air? c = -16

2. Use this table to answer the question.

estion.		AROC= Ya-YI
х	f(x)	X2-X1
-2	15	71
-1	9	= 5-15
0	5	72 0-(-2)
1	3	= -10 = [-5]
2	3	2
	x	x = f(x)

What is the average rate of change of x over the interval $-2 \le x \le 0$?

3. What is the end behavior of the graph of $f(x) = -0.25x^2 - 2x + 1$?

- A. As x increases, f(x) increases.
 As x decreases, f(x) decreases.
- As x increases, f(x) decreases. As x decreases, f(x) decreases.
 - C. As x increases, f(x) increases. As x decreases, f(x) increases.
 - **D.** As x increases, f(x) decreases. As x decreases, f(x) increases.

G) Unit 3: Analyze Functions Using Different Representations

1. Use this graph to answer the question.

10013 are

Which function is shown in the graph?

B.
$$f(x) = x^2 + 3x - 10$$

C.
$$f(x) = x^2 + x - 12$$

D.
$$f(x) = x^2 - 5x - 8$$

2. The function $f(t) = -16t^2 + 64t + 5$ models the height of a ball that was hit into the air, where t is measured in seconds and h is the height in feet.

This table represents the height, g(t), of a second ball that was thrown into the air.

Time, t (in seconds)	Height, g(t) (in feet)
0	4
1	36
2	36
3	4

Which statement BEST compares the length of time each ball is in the air?

- **A.** The ball represented by f(t) is in the air for about 5 seconds, and the ball represented by g(t) is in the air for about 3 seconds.
- **B.** The ball represented by f(t) is in the air for about 3 seconds, and the ball represented by g(t) is in the air for about 5 seconds.
- **C.** The ball represented by f(t) is in the air for about 3 seconds, and the ball represented by g(t) is in the air for about 4 seconds.
- The ball represented by f(t) is in the air for about 4 seconds, and the ball represented by g(t) is in the air for about 3 seconds.

TUNIT 4: MODELING AND ANALYZING EXPONENTIAL FUNCTIONS

- A) Unit 4: Create Equations That Describe Numbers or Relationships
- 1. A certain population of bacteria has an average growth rate of 2%. The formula for the growth of the bacteria's regulation for the growth of the bacteria's population is $A = P_0 \cdot 1.02^t$, where P_0 is the original population and t is the time in hours.

If you begin with 200 bacteria, about how many bacteria will there be after 100 hours?

A=200(1.02) 160

- B) Unit 4: Build a Function That Models a Relationship Between Two Quantities
- 1. Which function represents this sequence?

	a	n = O	7).	<u> </u>
--	---	-------	-----	----------

	n	1	2	3	4	5		an = air
	a _n	6	18	54	162	486		oin = Oil
3 ⁿ⁻¹		C	λ, =	. C	, ~	(=	19	8 = 3

A.
$$f(n) = 3^{n-1}$$

B.
$$f(n) = 6^{n-1}$$

C.
$$f(n) = 3(6^{n-1})$$

 $f(n) = 6(3^{n-1})$

- 2. The points (0, 1), (1, 5), (2, 25), and (3, 125) are on the graph of a function. Which equation represents that function?
 - **A.** $f(x) = 2^x$
- 1,5,25,125
- **B.** $f(x) = 3^x$
- **C.** $f(x) = 4^x$
- (D.) $f(x) = 5^x$

C) Unit 4: Build New Functions from Existing Functions

- 1. Which function shows the function $f(x) = 3^x$ being translated 5 units to the left?
 - **A.** $f(x) = 3^x 5$
 - **B.** $f(x) = 3^{(x+5)}$
 - **C.** $f(x) = 3^{(x-5)}$
 - **D.** $f(x) = 3^x + 5$
- 2. Which function shows the function $f(x) = 3^x$ being translated 5 units down?
 - (A) $f(x) = 3^x 5$
 - **B.** $f(x) = 3^{(x+5)}$
 - **C.** $f(x) = 3^{(x-5)}$
 - **D.** $f(x) = 3^x + 5$

D) Unit 4: Understand the Concept of a Function and Use Function Notation

1. Consider this pattern.

Which function represents the sequence that represents the pattern?

$$\Upsilon = \Upsilon$$

b.
$$a_n = (4)^{n}$$

C.
$$a_n = (a_n)(4)^{(n-1)}$$

D.
$$a_n = (a_n)^4$$

3. Which explicit formula describes the pattern in this table?

d	С
0	1
1	6
2	36
3	216

A.
$$C = 6d$$

B.
$$C = d + 6$$

C.
$$C = 6^d$$

D.
$$C = d^6$$

2. Which function is modeled in this table?

х	f(x)	
1	1000	
2	800	
3	640	
4	512	

A.
$$f(x) = 1,000(0.80)^x$$

B.
$$f(x) = 1,000(0.20)^x$$

$$f(x) = 1,000(0.20)^{x-1}$$

D.
$$f(x) = 1,000(0.20)^{x-1}$$

4. If $f(12) = 100(0.50)^{12}$, which expression gives f(x)?

A.
$$f(x) = 0.50^x$$

B.
$$f(x) = 100^x$$

C.
$$f(x) = 100(x)^{12}$$

$$\int_{0.0}^{\infty} f(x) = 100(0.50)^x$$

E) Unit 4: Interpret Functions That Arise in Applications in Terms of the Context

1. A population of squirrels doubles every year. Initially, there were 5 squirrels. A biologist studying the squirrels created a function to model their population growth: $P(t) = 5(2^t)$, where t is the time in years. The graph of the function is shown.

What is the range of the function?

- A. any real number
- B. any whole number greater than 0
- C. any whole number greater than 5
 - any whole number greater than or equal to 5

2. The function graphed on this coordinate grid shows f(x), the height of a dropped ball in feet after its xth bounce.

On which bounce was the height of the ball 10 feet?

- A. bounce 1
 - B. bounce 2
 - C. bounce 3
 - D. bounce 4