Identifying functions and using function notation

1/5/18

- A relation is a pairing of input and output values
- The domain contains the input values.
- The rance of a function or relation contains the output values.
- The input value, normally X, is the independent variable.
- The output, normally $y_{\text {}}$, is called
the dependent variable

The input of a function is the independent variable. The output of a function is the dependent variable. The
value of the dependent variable depends on, or is a function of, the value of the independent variable.

CautionHI!

- In a function, the y

 values may repeat, the x values may not.Function

- A function is a mapping

 between 2 sets that associates with each element of the first set, the domain, a unique (one and only one) element of the second set, the range.
Identifying functions

Input	Output

and range

Vertical line test

- When a relation is represented by a graph, the vertical line test is used to determine if the relation is a function

Vertical Line Test

A graph is a function if and only if no vertical line passes through two or more points on the graph

Move the dotted line...

Are these functions?

Example 1: Identifying Independent and Dependent Variables

Identify the independent and dependent variables in the situation.

A painter must measure a room before deciding how much paint to buy.
The amount of paint depends on the measurement of a room.

Dependent: amount of paint
Independent: measurement of the room

Example 2: Identifying Independent and Dependent Variables

Identify the independent and dependent variables in the situation.

The height of a candle decrease \boldsymbol{d} centimeters for every hour it burns.
The height of a candle depends on the number of hours it burns.

Dependent: height of candle
Independent: time

Example 3: Identifying Independent and Dependent Variables

Identify the independent and dependent variables in the situation.

A veterinarian must weigh an animal before determining the amount of medication.

The amount of medication depends on the weight of an animal.

Dependent: amount of medication
Independent: weight of animal

- It is sometimes necessary to work with more than one equation at a time.
- Function notation uses parentheses and letters to distinguish between equations
- The equation $y=x+2$ can be written
- $f(x)=x+2$
- The equation $y=x-5$ can be written
- $g(x)=x-5$
- If I want to evaluate for $x=2$, I would need to know which equation I wanted to use. Functional notation tells me that.
- $g(2)$ means I want to replace \times with 2 in the g function,
- So $g(2)=2-5=-3$
- If $h(x)=4 x-3$ and $p(x)=x^{2}-3 x$ find $p(-3)$
- Use the "p" function
- $p(-3)=(-3)^{2}-3(-3)$

$$
\begin{aligned}
& =9+9 \\
& =18
\end{aligned}
$$

Evaluate functions

- If $h(x)=-5 x^{2}+2$ and $p(x)=x / 2-3 x$ find $h(-2)$

Word problem

- A company charges $\$.25$ per minute for a cell phone call. This can be expressed as the ordered pair (1, .25). Find the cost of a 2 minute call, 3-minute, and 4minute call. Express the answers in set notation. Identify the domain and range. Determine if the set represents a function.
- 1 minute $=(1, .25)$
- 2 minute $=(2, .5)$
- 3 minute $=(3, .75)$
- 4 minute $=(4,1)$
- Domain $=1,2,3,4, \quad$ Range $=.25, .5, .75,1$
- Yes, function for every x value there is exactly one y value

Problem

- The company charges $\$.25$ per minute for up to 3 minutes and then $\$.10$ for every minute thereafter.
- Find the cost of a 2 minute, 3 minute and 4 minute call. Express the answers as ordered pairs.
- Find the domain and range.
- Is the set a function?

practice

- 1. If $a(x)=9+6 x$ and $v(x)=9 x+3 x^{2}$, find $v(2)$
- 2. If you buy one ticket to a local baseball game, the cost is $\$ 25$. This can be expressed as the ordered pair $(1,25)$. There is a 1 -day special if you buy one ticket at regular price, each additional ticket is $\$ 20$. Find the cost if you buy 2,3,and 4 tickets. Express the answers as ordered pairs in set notation. Identify the domain and range. Is the set a function?
- FORM A
- $y=5 x-3$
- Find y when $x=2$
- $y=5 x-3$
- $y=5(2)-3$
- $y=10-3$
- $y=7$
- solution: $(x, y)=(2,7)$

FORM B
$f(x)=5 x-3$
Find $f(2)$.
$f(x)=5 x-3$
$f(2)=5(2)-3$
$f(2)=10-3$
$f(2)=7$
solution: $(x, f(x))=(2,7)$

