Warm-Up 1/10/18

- How is a function different from a Relation?
- What are the words used to describe an input variable and an output variable?

Funchon Jahon Guen Hahon input has canhase CXadlyure mulhille outputs ontput-Input MAPUT domain vange 1- Coothinai X- Word. rates Independent dependent X-values Y-value

Class Work 1: 1/9/18-1/10/18

Unit 2B – Function

Introduction: What's a Function? Name:							
("Do"main	Ran"ge t"						
\$1 250 500	\$1 250 100						
\$5 5° 10°	5.	COI					
press one of the							
(buttons	one of the coke produce.						

A coke machine is a good example of a relation that is a **function**. In the machine above assume the price for a soft drink is listed at \$1.30 and the top button shows a picture of <u>a 16 oz Coca</u> Cola bottle.

1. If you were to put 2 dollar bills into the coke machine and press the top button what would you get in return?

1602. Weakola product, 256, 256, 100, 100

2. If your repeated the action in step # 1 what would happen? And again?

Same as in Hy

3. What would happen if you put in 8 quarters and pushed the top button? (Remember that is a different input)

Same as in #1

b.	x	2	0	2 4		6	
	у	4	- 2	4	3	4	

¢	circle one: Function Not a Function
ſ	Domain: -2,0,2,4,6
	Range: 0.73, 1, 4, 16, 84

circle one:	
Function	Not a Function
Domain:	
Range:	J

c.

circle one:	
Function	Not a Function
Domain:	
Range:	

RANGE

6

3

5

1

2

Not a Function

3

circle one:

Function

circle one

Function

- 2-

- 3

6. MAPPINGS: Which of the mappings could be considered a function?

3

circle one:

Function

F٥

Not a Function

- 1

0

Not a Function

11. **<u>FUNCTION NOTATION</u>**. Given the function $d(x) = x^2 + 3^x$, determine the following: a. d(2) b. d(0)

14. **<u>FUNCTION NOTATION</u>**. Given the function b(x): {(2,3), (1,4), (4,2), (5,3), (3,0)}, determine the following:

a. b(2)

- b. *b*(3)
- c. What is **x** if b(x) = 3?

15. <u>FUNCTION NOTATION</u>. Given $f(8) = (8)^2 + 2(8)$, determine a possible equation for f(x)

16. **FUNCTION NOTATION**. Given the partial set of values for the functionh(x), determine a possible equation for h(x).

x	-2	0	1	2	3
h(x)	-6	0	3	6	9

x	0	1	2	3	4
p(x)	2	3	4	5	6

17. **FUNCTION NOTATION**. Given the partial set of values for the function h(x), determine a possible equation for p(x).

y = mx + b p(x) = 1x + 2p(x) = 1x + 2

Odd &	Even Fu	nctions	1/8/18					
Even oud Functions Notes.pptx Even and Odd Functions								
Function: A 🧕	Napping	from a set a	of					
<u>elements in the in</u> <u>in put</u>	<u>₽↓</u> to a set of <mark>∠(</mark> is related to (exactly one <u>0</u>	where each <u>u t-put</u> .					
Algebraically	Even	Odd	Neither					

Class Work 2 1/8/18

].	even/a	dd		- star	
Equ	ation	Table		Graph	Even/Qdd/Neither	-
y =	= x [*]	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	2.	odd -	222
y = x ³	+ x ¹	x -2 -1 0 1 Y -10 -2 O 2	2		odd	0
y = 3)	< ²	x -2 -1 0 1 y 2 3 0 3	2 12	$\xrightarrow{\psi}$	wen	
y = 2x' +	1	x -2 -1 0 1 Y -3 -1 1 3	2	2	reither	
$y = 3x^2 + 2$		x -2 -1 0 1 y 8 1 0 5	2 10	\rightarrow	reither	
$y = x^4 + 2x$	2 <u>x</u> y	-2 -1 0 1 24 3 0 3	2 24	· Ý·	even	
$y = 3x^6 - 8x^4$	x y	-2 -1 0 1 64 -5 0 -5	2 64	· [].	wer	
$y = x^{1} + 2$	x y	-2 -1 0 1 0 1 2 3	24		neithe	x -
$y = -3x^4$	X Y	-2 -1 0 1 48 -3 0 -3	2 -48	· .	even	
$y = 2x^{0.5}$	x - y Q($\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2		· neith	er

HW Assignment

Even & Odd Functions HW Practice Worksheet

Due on Tuesday 1/11/18

End Behavior of Functions

Functions - End Behavior.ppt

Functions notation.ppt Functions Practice HW.docx Functions notation notes.ppt Even Odd Functions Notes.pptx Functions - End Behavior.ppt