Mid-Term Review 4/9/18

Unit 1: Relationships between Quantities and Expressions

- 1.) Find the sum $(5x^2 + 6x 15) + (3x^2 8x + 9)$.
- 2.) Find the difference $(x^3 7x^2 + 5x 2) (6x^2 9)$. $1x^2 + 5x 2 6x^2 + 9 = (x^3 13x^2 + 5x + 7)$

- 4.) Simplify $\sqrt{75x^7}$
- 5.) Simplify $\sqrt{5} 9\sqrt{45}$.

- 7.) Simplify $(\sqrt{10})(\sqrt{4})$
- 8.) Simplify $\sqrt{6}(2 + \sqrt{50})$

Unit 2: Reasoning with Linear Equations and Inequalities

- 10x + 84 5×+ 44

9.) What does an equation with **infinite solutions** look like? What does an equation with **no solution** look like?

10.) You are purchasing paint and paintbrushes for an art project. Tubes of paint cost \$12 each and paintbrushes cost \$18 each. You plan on spending \$75 and purchasing a total of 6 items. Which linear system best represents the situation?

12x+18y=75 11.) What is the solution to this system of equations? $\begin{cases} 2x + y = 20 \\ 6x - 5y = 12 \end{cases}$ 12.) What is the solution to the following system of equations? $\begin{cases} 8x + y = -16 \\ -3x + y = -5 \end{cases}$

$$\begin{array}{c}
\text{(I)} & 2x + y = 20 \\
6x - 5y = 12 \\
-2x + y = 20 \\
-2x + y = 20 \\
4x - 2x + y = 20
\end{aligned}$$

$$\begin{array}{c}
\text{(6)} & 4y = 20 \\
-2x + y = 20 \\
-2x + y = 20
\end{aligned}$$

$$\begin{array}{c}
\text{(6)} & 5(20 - 2x) = 12 \\
\text{(6)} & 100 + 10x = 12 \\
16x - 100 + 100 + 100
\end{aligned}$$

$$\begin{array}{c}
\text{(6)} & 12 \\
\text{(7)} & 100 \\
\text{(7)} & 100 \\
\text{(7)} & 100
\end{array}$$

Literal Equations.

- 13. Solve for y: xy d = m
- 15. Solve for w: V = lwk

14. Solve for y:
$$\frac{y}{2} + c = d$$

$$= 2d - 2c$$
16. Solve for p: $\frac{1}{3}p = n$

17.) Graph the following inequality:

$$M = \frac{7}{4} b = 2$$

18.) Graph the system of linear inequalities:

Solid
$$y \le -\frac{5}{2}x - 2$$
 $m = -\frac{5}{2}b = -2$
dashed $y < -\frac{1}{2}x + 2$ $m = -\frac{1}{2}b = 2$

Use graph to answer questions 16-18.

- 19. What point could be described as the REALTIVE MINIMUM in the graph?
- 20. What point(s) could be described as an x-intercept in the graph?
- 21. What are the intervals of increase, decrease, and constant?

 (-1.52×20) $(-002\times2-1.5)$ - (1.52×200) (02×21.5)

Unit 3: Modeling and Analyzing Quadratic Functions

22.) What are the two binomial factors of the polynomial shown?

the polynomial shown? $3x^2 - 8x + 4$

23.) Solve the following by factoring and using the zero product property. $x^2 - \bigcirc + 24 = 0$

Big-X X2-10×+2430

- 24.) Solve equation by taking square roots. $5x^2 + 8 = 253$
- 25.) Which is the factored form of $7x^2 + 28a 84$?

26.) The length of a rectangle is 8 cm more than four times the width. If the area of the rectangle is 96 cm², what is the width of the rectangle? (HINT: A=lw)

27.) Tell whether the graph of the quadratic function $y = -2x^2 - 10x + 8$ opens upward or downward. Explain.

For questions 28 - 29 use the graph below.

28.) Identify the vertex of the parabola. Then give the minimum or maximum value of the function.

29.) Find the roots of the quadratic function.

$$X = -0.5$$
; $X = 2.5$

30.) Order the functions from narrowest graph to widest graph.

- 31.) Using $f(x) = x^2$ as a parent graph, write a function that includes a translation of 4 units to the right? $f(x) = (x 4)^2$
- 32.) Using $f(x) = x^2$ as a parent graph, write an equation that shows translation of 2 right and vertical stretch by 3 to graph. $f(x) = 3(x-2)^2$
- 33.) John threw a ball straight up with an initial speed of 20 meters per second. The function $y = -4(x-9)^2 + 25$ describes the ball's height, in meters, t seconds after John threw it. What are the coordinates of the vertex?

Vertex: (9,25)

