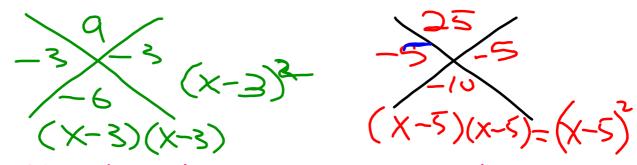
Warm-Up

2/8/18


Make the following perfect square trinomials and factor.

1.
$$x^{2} + 14x + 49 = (x + 7)^{2}$$

2. $x^{2} - 9x + 81/4 = (x - 7/2)^{2}$
3. $x^{2} - 18x + 81 = (x - 9)^{2}$
4. $x^{2} + 2x + 1 = (x + 1)^{2}$
5. $x^{2} + 5x + 4 = (x + 7)^{2}$

Opening: 2/8/18

Review: Factor the following trinomials.

1.
$$x^2 - 6x + 9$$
 2. $x^2 - 10x + 25$

- How does the constant term in the binomial relate to the b term in the trinomial?
- How does the constant term in the binomial relate to the c term in the trinomial?

Agenda for Today 2/8/18

- 1. Warm-Up/Opening
- 2. Presentations of defense for Matt or Marcus and present your error analysis for Emma's error.
- Post-It Check onCompleting the Square
- 4. Choose your activity
- Quadratic Formula

Presentations

Defend:

Matt is trying to solve the following problem by completing the square:

$$x^2 - 18x + 6 = 0$$

He believes he has got the answer and wants to compare it with his classmate, Marcus. He says, "Hey Marcus, I got $x = 9 + 5\sqrt{3}$ and $9 - 5\sqrt{3}$, what did you get?"

Marcus replied, "hmm that's weird I got x = 9 + $\sqrt{75}$ and 9 - $\sqrt{75}$."

Matt then says "well we both got the 9 part so we have similar thinking, lets ask Tiffany!"

Tiffany looks at their work and says "I got the same thing as Matt I just combined like terms and got x = $14\sqrt{3}$ and $4\sqrt{3}$."

More confused than ever they call over Mrs. Dombrowski. She assures them that one of them has the correct answer...

Who is correct? Explain.

$$x^{2}-18x+6=0$$
 $-6-6$
 $x^{2}-18x=-6$
 $x^{2}-18x=-6$
 $x^{2}-18x+81=-6+81$
 $(x-9)^{2}-175$
 $(x-9)^{2}-175$
 $(x-9)^{2}-175$
 $(x-9)^{2}-175$

Day 9 - Completing the Squares & Quadratic Formula - Deriving & DiscrimFreebntuklopte08,1200ffebook

Error Analysis:

Describe and correct the error Emma made when attempting to solve by completing the square. Problem: $x^2 + 20x - 8 = 0$

Emma's Process:

$$x^2 + 20x - 8 = 0$$

$$x^2 + 20x + ___ = 8 + ___$$

$$x^2 + 20x + 10 = 8 + 10$$

$$x^2 + 20x + 10 = 18$$

There are no numbers that multiply to 10 and Add to 20. Therefore, it is not factorable.

Correct Process:

$$\frac{x^{2}+20x-8}{+8}$$

$$\frac{x^{2}+20x-8}{x^{2}+20x-8}$$

$$\frac{10^{2}=100}{x^{2}+20x+100}$$

$$\frac{x+10}{(x+10)}=\frac{x+100}{40}$$

$$\frac{x+10}{10}=\frac{x+100}{40}$$

Post-It

Check!!!

Solve by completing the square.

$$x^{2} - 6x - 72 = 0$$
 $+72 + 9$
 $-6x - 72 = 0$
 $+72 + 9$
 $-6x - 72 = 9$
 $-6x - 7$

Partner Review Activity (30 mins)

Choose your activity!

- Solving by Factoring Connect 4 Partner Activity
- 2. Quadratic Equations Coloring Worksheet
- 3. Who killed Mr. Quadratic?

Essential Question 2/8/18

How is the Quadratic Formular developed by completing the square?

Deriving the Quadratic Formula

$$\begin{array}{l}
a x^{2} + b x + c = 0 \\
a x^{2} + b x = -c \\
a x^{2} + b x = -c \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b x + b^{2} = -c + b^{2} \\
a x^{2} + b$$

THE QUADRATIC FORMULA

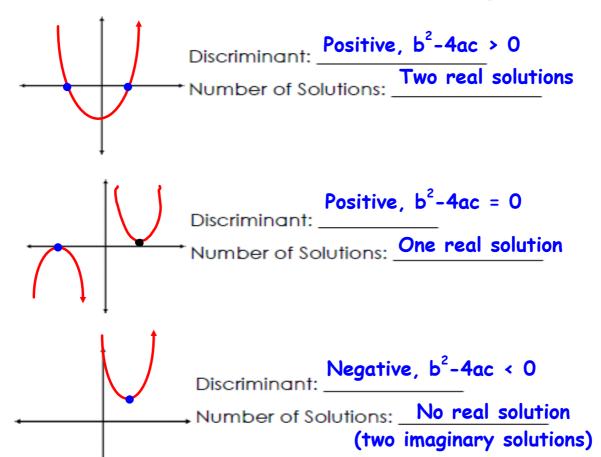
So far we have learned several methods for solving quadratic equations.

The quadratic formula will work for ANY quadratic equation written in standard form : $ax^2 + bx + c = 0$

Steps for successfully applying the Quadratic Formula:

- 1. Write the equation in standard form.
- 2. Set the function equal to 0 if necessary.
- Identify a, b, and c and plug them into the quadratic formula using parentheses.
- 4. Use the order of operations to simplify.
- 5. Simplify the radical if you can.

Quadratic Formula


$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

** WRITE THE QUADRATIC FORMULA FOR EVERY PROBLEM**

THE DISCRIMINANT OF A QUADRATIC

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
Discriminant

The discriminant tells the number of solutions of a quadratic.

Finding the discriminant for each equation, and then find the solutions using the quadratic formula.

A)
$$f(x) = 3x^{2} - 5x - 2$$
 $Q = 3$
 $b = -5$
 $C = -2$
 $C = -2$
 $C = -6 \pm \sqrt{6} - 44$
 $C = -6 \pm \sqrt{6} - 44$

•	
Discriminant: 49	0 m 1/2
Number of Solutions:	Solutions: 20h-1/3
$(x^2+2=2x)$ $(x^2-2x+2=0)$	X=-()+1-4
a=1 b=-2 C=0	$\frac{1}{2}$
$D = (-2)^2 - 4(1)(=$ $D = 4 - 8$	X=2+2i
D=-4 -4	J. Solukor
Discriminant:	V 50°
Number of Solutions:	Solutions:

Day 4 Quiz Review - Jeopardy.ppt